Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452908

RESUMO

Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.


Assuntos
Quebras de DNA de Cadeia Dupla , Lamina Tipo B , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
PLoS Genet ; 13(12): e1007119, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281621

RESUMO

Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage.


Assuntos
DNA Polimerase III/metabolismo , Domínio Catalítico , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Polimerase III/genética , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Genéticos , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Raios Ultravioleta
4.
FEMS Microbiol Lett ; 311(1): 44-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20722738

RESUMO

Helicobacter pylori infects the stomach of about half of the world's human population, frequently causing chronic inflammation at the origin of several gastric pathologies. One of the most remarkable characteristics of the species is its remarkable genomic plasticity in which homologous recombination (HR) plays a critical role. Here, we analyzed the role of the H. pylori homologue of the AddAB recombination protein. Bioinformatics analysis of the proteins unveils the similarities and differences of the H. pylori AddAB complex with respect to the RecBCD and AddAB complexes from Escherichia coli and Bacillus subtilis, respectively. Helicobacter pylori mutants lacking functional addB or/and addA show the same level of sensitivity to DNA-damaging agents such as UV or irradiation and of deficiency in intrachromosomal RecA-dependent HR. Epistasis analyses of both DNA repair and HR phenotypes, using double and triple recombination mutants, demonstrate that, in H. pylori, AddAB and RecOR complexes define two separate presynaptic pathways with little functional overlap. However, neither of these complexes participates in the RecA-dependent process of transformation of these naturally competent bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Exodesoxirribonucleases/metabolismo , Helicobacter pylori/enzimologia , Recombinação Genética , Proteínas de Bactérias/genética , Exodesoxirribonucleases/genética , Helicobacter pylori/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...